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ABSTRACT
Graph Convolution Networks (GCNs) manifest great potential in
recommendation. This is attributed to their capability on learning
good user and item embeddings by exploiting the collaborative
signals from the high-order neighbors. Like other GCN models,
the GCN based recommendation models also suffer from the no-
torious over-smoothing problem – when stacking more layers,
node embeddings become more similar and eventually indistin-
guishable, resulted in performance degradation. The recently pro-
posed LightGCN and LR-GCN alleviate this problem to some extent,
however, we argue that they overlook an important factor for the
over-smoothing problem in recommendation, that is, high-order
neighboring users with no common interests of a user can be also
involved in the user’s embedding learning in the graph convolution
operation. As a result, the multi-layer graph convolution will make
users with dissimilar interests have similar embeddings. In this
paper, we propose a novel Interest-aware Message-Passing GCN
(IMP-GCN) recommendation model, which performs high-order
graph convolution inside subgraphs. The subgraph consists of users
with similar interests and their interacted items. To form the sub-
graphs, we design an unsupervised subgraph generation module,
which can effectively identify users with common interests by ex-
ploiting both user feature and graph structure. To this end, our
model can avoid propagating negative information from high-order
neighbors into embedding learning. Experimental results on three
large-scale benchmark datasets show that our model can gain per-
formance improvement by stacking more layers and outperform the
state-of-the-art GCN-based recommendation models significantly.
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1 INTRODUCTION
Recommendation system has become one of the most important
techniques for various online platforms. It can not only provide per-
sonalized information for an specific user from overwhelming infor-
mation, but also increase the revenue for service providers. Among
them, Collaborative filtering (CF) based models [1, 15, 22, 40, 43]
have made substantial progress in learning user and item represen-
tations by modeling historical user-item interactions. For example,
matrix factorization (MF) can directly embed user/item as a feature
vector and model the user-item interactions with inner product [1].
Neural collaborative filtering models replace the MF interaction
function of inner product with nonlinear neural networks to learn
better user and item representations [15].

Recently, GCN-based models [14, 23, 31, 34, 35] have achieved
great success in recommendation due to the powerful capability on
representation learning from non-Euclidean structure. The core of
GCN-based models is to iteratively aggregate feature information
from local graph neighbors. It has been proved to be an efficient
way to distill additional information from graph structure, and
thus improves user and item representation learning and allevi-
ates the sparse problem. For example, NGCF [35] has proved that
exploiting high-order connectivity can help alleviate the sparsity
problem in recommendation. However, it is also well-recognized
that GCNs suffer from the over-smoothing problem [35], because
the graph convolution operation is actually a special kind of graph
Laplacian smoothing [35], making node representations become in-
distinguishable after multi-layer graph convolution [42]. As a result,
most current GCN based models obtain their peak performance
by stacking only few layers (e.g., 2 or 3 layers), and continuing
increasing the depth will lead to sharp performance degradation.
In the domain of recommendation, Chen et al. [3] have empirically
demonstrated that the user/item embeddings become more similar
when stacking more layers in NGCF due to the over-smoothing
effect. In other words, the preferences of different users become
homogeneous, resulted in performance degradation in recommen-
dation. Based on the observations, they proposed a LR-GCN model,
which removes the non-linearities in GCNs to simply the network
structure and introduced a residual network structure to alleviate
the over-smoothing problem, achieving substantially improvement
over NGCF on recommendation accuracy.

It is worth mentioning that the LightGCN proposed by He et
al. [14] has a similar formulation as LR-GCN. With careful experi-
mental studies, He et al. pointed out that the feature transformation
and nonlinear activation have no positive effect (or even negative
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effect due to the increase of training difficult) to the final perfor-
mance. Therefore, they only keep the neighborhood aggregation in
the LightGCN for collaborative filtering. Comparing to LR-GCN,
LightGCN further removes the “self-loop" in the aggregation oper-
ation. Although LightGCN is not dedicatedly designed for tacking
the over-smoothing problem, it has almost the same formulation as
LR-GCN and thus can also alleviate the over-smoothing problem
to some extent. In fact, both LR-GCN and LightGCN are consis-
tent with the recent theories in simplifying GCNs [39] and can
obtain the best performance with a deeper structure (e.g., 4 layers).
Despite the two success GCN based models are designed for rec-
ommendation, we argue that they still design the model from the
perspective of graph convolution, while have not well considered
the over-smoothing problem in the domain of recommendation.

The GCN based recommendation model is built upon a user-
item graph, in which the user and item are linked according to the
historical user-item interactions. The user embedding is learned
by iteratively aggregating messages passed from the neighboring
(both user and item) nodes. Note that the passed messages are dis-
tilled from the embeddings of neighboring nodes. When stacking
𝑘 layers, the information from the 𝑘-order neighbors, which are
indirectly connected via items and users, are also involved in the
embedding learning of a target node. An underlying assumption is
that the collaborative signals from high-order neighbors are benefi-
cial to the embedding learning. However, not all the information
from high-order neighbors are positive in reality. In the user-item
interaction graph, the high-order neighboring users could have no
common or even contradictory interest with a target user. This is
highly possible, especially when the graph is constructed based on
implicit feedbacks (e.g., click). In fact, the implicit feedback is more
widely used over the explicit feedbacks in modern recommendation
systems. The core idea behind collaborative filtering is that similar
users like similar items. Therefore, the collaborative signals that
we would like to exploit should be from similar users (i.e., users
with similar interests). However, existing GCN-based recommen-
dation models have not distinguished the high-order neighbors,
and just simply aggregate the messages from all those neighbors to
update user embeddings. As a result, the embeddings of dissimilar
users are also involved in the embedding learning of a target user,
negatively affecting the performance. This is also a reason of the
over-smoothing effect in the GCN-based recommendation models
– making the embeddings of dissimilar users to be similar.

Motivated by the above considerations, in this paper, we pro-
pose a novel Interest-aware Messaging-Passing GCN (IMP-GCN)
recommendation model, which groups users and their interacted
items into different subgraphs and operates high-order graph con-
volutions inside subgraphs. More specific, we adopt the simplified
network structure of LightGCN, as its effectiveness has been well
demonstrated in [14] and it can alleviate the over-smoothing prob-
lem to some extent. The first-order graph convolution is the same as
that of LightGCN. For the high-order graph convolution, only the
messages from nodes in the same subgraph are exploited to learn the
node embeddings. The subgraph is generated by a proposed graph
generation module, which integrates users features and graph struc-
ture to identify users with similar interests, and then constructs
the subgraphs by retaining those users and their interacted items.

To this end, our model can filter out the negative information prop-
agation in the high-order graph convolution operations for the
embedding learning, and thus can keep the uniqueness of users
by stacking more graph convolution layers. Extensive experiments
have been conducted on three large-scale real-world datasets to
validate the effectiveness of our model. Results show that our model
outperforms the state-of-the-art methods by a large margin and can
obtain better performance with more layers (till 7 layers) 1. This
indicates that our model can benefits from higher-order neighbors
by excluding negative nodes. Besides, with deep analysis on the
results, we found that the negative information in the embedding
propagation is the major reason for the performance degradation
of existing GCN-based recommendation models in deep structure.
We released the codes and involved parameter settings to facilitate
others to repeat this work 2.

In summary, the main contributes of this work are as follows:
• We step into the over-smoothing problem in existing GCN-based
recommendation models and point out an overlooked factor:
exploiting high-order neighbors indiscriminately makes the em-
beddings of users with dissimilar interests to be similar.

• We propose an IMP-GCNmodel which exploits high-order neigh-
bors from the same subgraph, in which the user nodes share more
similar interests than those in other subgraphs. It is proved to be
effective on alleviating the over-smoothing problem.

• We design a subgraph generation module to group users and
generate subgraphs from the user-item bipartite graph by con-
sidering users features and graph structure information.

• We conduct empirical studies on three benchmark datasets to
evaluate the proposed IPM-GCN model. Results show that IPM-
GCN can gain improvement by stacking more layers and learn
better user/item embeddings, and thus outperforms the SOTA
GCN-based recommendation models with a large margin.

2 METHODOLOGY
2.1 Recap
Let 𝑨 ∈ R𝑁×𝑀 be the user-item interaction matrix, where 𝑁 and
𝑀 indicate the number of users and items, respectively. An nonzero
entry 𝑎𝑢𝑖 ∈ 𝑨 indicates that user 𝑢 ∈ U has interacted with item
𝑖 ∈ I before; otherwise, the entry is zero. A user-item bipartite
graph G = (W, E) can be constructed based on the interaction
matrix, where the node set W consists of the two types of user
nodes and item nodes and E represents for the set of edges. For a
nonzero 𝑎𝑢𝑖 , there is an edge between the user 𝑢 and item 𝑖 . The
above information is taken as the input of GCN model to learn the
user and item representations by iteratively aggregating features
from neighboring nodes in the bipartite graph.

Herewe take LightGCN as an example to describe the GCN-based
recommendation model, because it achieves the state-of-the-art
performance with a very light design. Our model is also developed
based on its design.3 Let 𝒆 (0)𝒖 denote the ID embedding of user 𝑢
and 𝒆 (0)𝒊 denote the ID embedding of item 𝑖 , the graph convolution

1In experiments, we found that by stacking 7 layers, a user node almost reaches all the
other users in three different datasets. Therefore, no more gain after stacking 7 layers.
2https://github.com/liufancs/IMP_GCN.
3Note that although LR-GCN was inspired by a different motivation, its final formula-
tion is almost the same as LightGCN.
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Figure 1: The average ratio of nodes involved in different
layers of graph convolution on three datasets.

operation in LightGCN is described as follows:

𝒆 (𝒌)𝒖 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑖 |

𝒆 (𝒌−1)𝒊 ,

𝒆 (𝒌)𝒊 =
∑︁
𝑢∈N𝑖

1√︁
|N𝑖 |

√︁
|N𝑢 |

𝒆 (𝒌−1)𝒖 ,

(1)

where 𝒆 (𝒌)𝒖 and 𝒆 (𝒌)𝒊 represent the embeddings of the user 𝑢 and
item 𝑖 after 𝑘 layers propagation, respectively;N𝑢 denotes the set of
items that interact with user 𝑢, andN𝑖 denotes the set of users that
interact with item 𝑖; 1√

|N𝑢 |
√
|N𝑖 |

is symmetric normalization terms,

which can avoid the scale of embeddings increasing with graph
convolution operations [20]. After K layers graph convolution, the
final embeddings of a user 𝑢 and an item 𝑖 are the combination of
their embeddings obtained at each layer in LightGCN:

𝒆𝒖 =

𝐾∑︁
𝑘=0

𝛼𝑘𝒆
(𝒌)
𝒖 ; 𝒆𝒊 =

𝐾∑︁
𝑘=0

𝛼𝑘𝒆
(𝒌)
𝒊 , (2)

where 𝛼𝑘 ≥ 0 is a hyper-parameter assigned to the k-th layer. It
denotes the importance of this layer in constituting the final em-
bedding. From Eq. 2, it is expected that after iteratively aggregating
features from higher-order neighbors, the nodes will fail to preserve
their own distinct features and their embeddings become more and
more similar, leading to the over-smoothing problem. Besides, it
does not distinguish the heterogeneous features of high-order nodes
in the aggregation process. The noisy information from high-order
neighbors could hurt the embedding learning. For example, the
embeddings of users with no common interests or even contradic-
tory interests in the high-order neighbors are aggregated to learn a
target user’s embedding via the graph convolution operation.

Fig. 1 shows the average coverage ratio of the number of nodes
that a target node reaches in the propagation by stacking different
numbers of layers to all the nodes in the graph. It can be seen that
after 6- or 7-layer graph convolution, a node can almost receive
information from all the other nodes in embedding propagation.
Therefore, by aggregating information from all the connected high-
order neighbors, it is unavoidable that the node embeddings become

homogeneous in the current GCN-based models after stackingmore
layers, especially for the densely connected ones, whose embed-
dings will become more and more similar. In the recommendation
scenario, this means the uniqueness of users will be neglected in
deep structure.

Actually, current GCN-based recommendation models achieve
their peak performance at most 3 or 4 layers [14, 39]. Besides the
over-smoothing effect, we deem that a node also takes noisy or
negative information in the embedding propagation process, which
hurts the final performance. This is because a user’s interests of-
ten span a range of items. Different users can have very different
interests or even exhibit contradictory attitudes to some items.
Without distinguishing those users, the embedding propagation
may perform among users with very different interests to learn
their embeddings in the graph convolution operation. To avoid
the situation and alleviate the over-smoothing problem, it is im-
portant to group users with similar interests (and their interacted
items) into subgraphs and constrain the embedding propagation to
operate inside the subgraph. To achieve the goal we propose the
interest-aware message-passing GCN model.

2.2 IMP-GCN MODEL
2.2.1 Interest-aware Message-passing Strategy. With constructing
subgraphs, we would like that all the information propagated in
a subgraph can contribute to the embedding learning of all the
nodes in this subgraph. In other words, we aim to exclude the neg-
ative information propagation in the graph convolution operation
using subgraphs. To achieve the goal, we rely on user nodes to
form subgraphs in the user-item bipartite graph. The general idea is
that users with more similar interests are grouped into a subgraph,
and the items which directly linked to those users also belong to
this subgraph. Therefore, each user only belongs to one subgraph,
and an item can be associated with multiple subgraph. Let 𝐺𝑠 with
𝑠 ∈ {1, · · · , 𝑁𝑠 } denotes a subgraph, where 𝑁𝑠 is the number of sub-
graphs. In the next, we introduce the graph convolution operation
in our model.

Because the direct interactions between users and items provide
the most important and reliable information of user interests, in the
first-order propagation, all the first-order neighbors are involved
in the graph convolution operation. Let 𝒆 (0)𝒖 and 𝒆 (0)𝒊 denote the
ID embeddings of user 𝑢 and item 𝑖 , respectively. The first-order
graph convolution is:

𝒆 (1)𝒖 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑖 |

𝒆 (0)𝒊 ,

𝒆 (1)𝒊 =
∑︁
𝑢∈N𝑖

1√︁
|N𝑖 |

√︁
|N𝑢 |

𝒆 (0)𝒖 ,

(3)

where 𝒆 (1)𝒖 and 𝒆 (1)𝒊 represent the first layer embeddings of the
target user 𝑢 and item 𝑖 , respectively.

For the high-order graph convolution, to avoid introducing noisy
information, a node in a subgraph can only exploit the information
from its neighbor nodes in this subgraph. Because the items inter-
acted by a user all belong to the subgraph of this user, the user can
still receive information from all the linked items. However, for an
item node, its direct user neighbors can be distributed in different
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Figure 2: An overview of our IMP-GCN model with two subgraphs as illustration. In IMP-GCN, the first-order propagation
operates on whole graph, and high-order propagation operates inside the subgraphs.

subgraphs. To learn the embeddings of an item 𝑖 , for each subgraph
𝐺𝑠 it belongs to, we learn an embedding for this item. Let 𝒆 (𝒌)𝒊𝒔
denotes the embedding of item 𝑖 in subgraph 𝑠 after 𝑘 layers graph
convolution, the high-order propagation in IMP-GCN is defined as:

𝒆 (𝒌+1)𝒖 =
∑︁
𝑖𝑠∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑖 |

𝒆 (𝒌)𝒊𝒔 ,

𝒆 (𝒌+1)𝒊𝒔 =
∑︁
𝑢∈N𝑠

𝑖

1√︁
|N𝑖 |

√︁
|N𝑢 |

𝒆 (𝒌)𝒖 .

(4)

In this way, we guarantee that the embedding of a node learned in a
subgraph only contributes to the embedding learning of other nodes
in this subgraph. This can avoid the noisy information propagated
from unrelated nodes. 𝒆 (·)𝒊𝒔 can be regarded as the features learned
from the users with a similar interest in the subgraph 𝐺𝑠 . This
make senses since users with similar interests often prefer the same
feature of an item. The final representation of an item 𝑖 after𝑘 layers
graph convolution is a combination of its embeddings learned in
different subgraphs, i.e.,

𝒆 (𝒌)𝒊 =
∑︁
𝑠∈S

𝒆 (𝒌)𝒊𝒔 , (5)

where 𝑆 is the subgraph set that item 𝑖 belongs to.

2.2.2 Layer Combination and Prediction. We combine the embed-
dings obtained at each layer to form the final representation of user
𝑢 and item 𝑖 as Eq. 2. Similar to LightGCN, 𝛼𝑘 is set uniformly as
1/(𝐾 + 1) [14].

With the learned embeddings of users (i.e., 𝒆𝑢 ) and items 𝒆𝑖 ,
given a user 𝑢 and a target item 𝑖 , the preference of the user to the
item is computed by inner product:

𝑟𝑢𝑣 = 𝒆𝑇𝒖 𝒆𝒊 . (6)

Notice that other interaction functions can be also applied, such as
Euclidean distance. Because the main focus of this work is to study
the effects of distinguishing user interests in the graph convolution

in the GCN-based recommendation model, we adopt the inner
product as previous work [2, 35, 44] for fair comparisons in the
empirical studies.

2.2.3 Matrix-form propagation rule. We implement our algorithm
with the matrix form propagation rule (see [35] for more details),
by which we can simultaneously update the representations of all
users and items in a rather efficient way. It is a commonly used ap-
proach to make graph convolution network feasible for large-scale
graph [28, 35]. Let 𝑬 (0) be the representations matrix for users ID
and items ID; 𝑬 (𝒌) represents the representation of users and items
at the 𝑘-th layer. Similarly, 𝑬 (𝒌)

𝒔 is defined as the representation
of users and items at the 𝑘-th layer in subgraph 𝐺𝑠 . As shown in
Fig. 2, the first layer embedding propagation in our model can be
described as follows:

𝑬 (1) = L𝑬 (0) , (7)
where L is the Laplacian matrix for the user-item interaction graph.

As we involve the subgraphs in high-order graph convolution
layers,the embeddings propagation on subgraphs is formulated as
follows:

𝑬 (𝒌−1)
𝒔 = L𝑠𝑬 (𝒌−2)

𝒔 , (8)
where 𝑘 ⩾ 2; L𝑠 represent the Laplacian matrix for the subgraph
𝐺𝑠 . And then, the (𝑘 − 1)-th layer embeddings are propagated on
the user-item graph and obtained the embeddings in the 𝑘-th layer:

𝑬 (𝒌)
𝒔 = L𝑬𝒔

(𝒌−1) . (9)

We aggregate all the 𝑘-th layer embeddings involved different sub-
graphs to formulate the final 𝑘-th layer embeddings:

𝑬 (𝒌) =
∑︁
𝑠∈𝐺𝑠

𝑬 (𝒌)
𝒔 . (10)

Lastly, we combine all the layers’ embeddings and get the final rep-
resentations of users and items, this formulation keeps consistent
with it in LightGCN [14]:

𝑬 = 𝛼0𝑬
(0) + 𝛼1𝑬 (1) + · · · + 𝛼𝐾𝑬 (𝑲) (11)
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2.2.4 Optimization. In this work, we target at the top-𝑛 recom-
mendation, which aims to recommend a set of 𝑛 top-ranked items
matching the target user’s preference. Compared to rating predic-
tion, this is a more practical task in real commercial systems [29].
Similar to other rank-oriented recommendation works [35, 44], we
adopt the pairwise learning method for optimization. To perform
the pairwise learning, it needs to constructs a triplet of {𝑢, 𝑖+, 𝑖−},
with an observed interaction between 𝑢 and 𝑖+ and an unobserved
interaction between 𝑢 and 𝑖−. This method assumes that a positive
item (i.e., 𝑖+) should rank higher than an negative item (i.e., 𝑖−). The
objective function is formulated as:

argmin
∑︁

(u,i+,i−) ∈O
− ln𝜙 (𝑟𝑢𝑖+ − 𝑟𝑢𝑖− ) + 𝜆 ∥Θ∥22 (12)

where O = {(𝑢, 𝑖+, 𝑖−) | (𝑢, 𝑖+) ∈ R+, (𝑢, 𝑖−) ∈ R−} denotes the
training set; R+ indicates the observed interactions between user 𝑢
and 𝑖+ in the training dataset, and R− is the sampled unobserved
interaction set. 𝜆 and Θ represent the regularization weight and
the parameters of the model, respectively. The 𝐿2 regularization is
used to prevent overfitting.

The mini-batch Adam [19] is adopted to optimize the prediction
model and update the model parameters. Specifically, for a batch
of randomly sampled triples (𝑢, 𝑣+, 𝑣−) ∈ (𝑂), the representation
of those users and items are first learned by the propagation rules
and then the model parameters are updated by using the gradients
of the loss function.

2.3 Subgraph Generation Module
In this section, we introduce our proposed subgraph generation
module which is designed to construct the subgraphs 𝐺𝑠 with 𝑠 ∈
{1, · · · , 𝑁𝑠 } from a given input graph G. Remind that the subgraphs
are used to group users with common interests in our model. We
formulate the user grouping as a classification task [18], i.e., each
user is classified to a group. Specifically, each user is represented
by a feature vector, which is a fusion of the graph structure and the
ID embedding:

𝑭𝒖 = 𝜎 (𝑾1 (𝒆 (0)𝒖 + 𝒆 (1)𝒖 ) + 𝒃1), (13)

where 𝑭𝒖 is the obtained user feature via feature fusion. 𝒆 (0)𝒖 is the
embedding of user ID and 𝒆 (1)𝒖 is the feature obtained by aggre-
gating local neighbor in the graph (i.e., the user embedding after
the first layer propagation.).𝑾1 ∈ 𝑅𝑑×𝑑 and 𝒃1 ∈ 𝑅1×𝑑 are respec-
tively the weight matrix and bias vector of the fusion method. 𝜎
is the activation function. LeakyReLU [26] is adopted, because it
can encode both positive and small negative signals. To classify the
users into different subgraphs, we cast the obtained user feature to
a prediction vector with a 2-layer neural networks:

𝑼𝒉 = 𝜎 (𝑾2𝑭𝒖 + 𝒃2),
𝑼𝒐 =𝑾3𝑼𝒉 + 𝒃3,

(14)

where 𝑼𝒐 is the prediction vector. The position of maximum value
in𝑈𝑜 represents which group/subgraph the user belongs to.𝑾2 ∈
𝑅𝑑×𝑑 ,𝑾3 ∈ 𝑅𝑑×𝑁𝑠 and 𝒃2 ∈ 𝑅1×𝑑 , 𝒃3 ∈ 𝑅1×𝑁𝑠 are respectively the
weight matrices and bias vectors of the two layers. The dimension
of the prediction vector dimensions is the same as the number of
subgraphs, which is a pre-selected hyper-parameter. Note that it

Table 1: Basic statistics of the experimental datasets.

Dataset #user #item #interactions sparsity

Kindle Store 68,223 61,934 982,618 99.98%
Home&Kitchen 66,519 28,237 551,681 99.97%

Gowalla 29,858 40,981 1,027,370 99.92%

is an unsupervised method to classify users into different groups
and thus does not need ground-truth label. For users with similar
embeddings, Eq. 14 will generate similar prediction vector, namely,
they will be classified into the same group. The subgraph generation
aims to construct a matrix, which represents the user-item adja-
cency relation in a subgraph based on the user grouping results and
the Laplacian matrix of the original user-item graph. For the matrix
of each subgraph, according to the obtained user group informa-
tion, we filter out the user-item adjacency relations in the Laplacian
matrix of the original user-item graph if the corresponding users
are not in the user group.

3 EXPERIMENTS
3.1 Experimental Setup
3.1.1 Data Description. To evaluate the effectiveness of IMP-GCN,
we conducted experiments on three benchmark datasets: Amazon-
Kindle Store, Amazon-Home&Kitchen and Gowalla. The first two
datasets are from the public Amazon review dataset4, which has
been widely used for recommendation evaluation in previous stud-
ies. The third dataset is a check-in dataset collected from Gowalla,
where users share their locations by checking-in. We followed the
general setting in recommendation to filter users and items with
few interactions. For all the datasets, we used the 10-core settings,
i.e., retaining users and items with at least 10 interactions. The
statistics of three datasets are shown in Table 1. As we can see, the
datasets are of different sizes and sparsity levels, which are useful
for analyzing the performance of our method and the competitors
in different situations.

For each datasets, we randomly split it into training, validation,
and testing set with the ratio 80:10:10 for each user. The observed
user-item interactions were treated as positive instances. For the
methods which adopt the pairwise learning strategy, we randomly
sample a negative instance, that the user did not consume before,
to pair with each positive instance.

3.1.2 Evaluation Metrics. For each user in the test set, we treat
all the items that the user did not interact with as negative items.
Two widely used evaluation metrics for top-𝑛 recommendation are
adopted in our evaluation: Recall and Normalized Discounted Cu-
mulative Gain [13]. For each metric, the performance is computed
based on the top 20 results. Notice that the reported results are the
average values across all the testing users.

3.1.3 Experimental Settings. We implemented our model with Ten-
sorflow 5 and carefully tuned the key parameters. The embedding
size is fixed to 64 for all models and the embedding parameters
are initialized with the Xavier method [17, 41]. We optimized our
4http://jmcauley.ucsd.edu/data/amazon.
5https://www.tensorflow.org.
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Figure 3: Results Comparison between IMP-GCN and LightGCN at different layers on Kindle Store and Gowalla. IMP-GCN2,
IMP-GCN3, and IMP-GCN4 represent IMP-GCN with 2, 3, and 4 subgraphs, respectively.

method with Adam [19] and used the default learning rate of 0.001
and default mini-batch size of 1024 (on gowalla, we increased the
mini-batch size to 2048 for speed). The 𝐿2 regularization coeffi-
cient 𝜆 is searched in the range of {1𝑒−6, 1𝑒−5, · · · , 1𝑒−2}. The early
stopping and validation strategies are kept the same as those in
LightGCN.

3.2 Study of IMP-GCN
In this section, we first evaluated the performance of our IPM-GCN
model when stacking different layers in graph convolution. This is
to examine whether our interest-aware message-passing strategy
can alleviate the over-smoothing problem. In the next, we study the
effects of the subgraph numbers on the performance of our model.

3.2.1 Effect of Layer Numbers. To investigate the effectiveness of
IMP-GCN in deeper structure, we increased the model depth and
performed detailed comparison with LightGCN. Since the adopted
message-passing strategy is the same as LightGCN in the first-order
convolution layer, we increased the layer number from 2 to 7. The
experimental results are shown in Fig. 3, in which IMP-GCN2, IMP-
GCN3 and IMP-GCN4 indicate the model with 2, 3, and 4 subgraphs,
respectively. We omitted the results on 𝐻𝑜𝑚𝑒&𝐾𝑖𝑡𝑐ℎ𝑒𝑛 for space
limitation, because they show exactly the same trend. From the
results, we had some interesting observations.

Firstly, the proposed IMP-GCN outperforms LightGCN consis-
tently when stacking more than 2 or 3 layers over both datasets.
This indicates that our model can learn better embeddings by the
interest-aware message-passing strategy. Secondly, the peak per-
formance of LightGCN is obtained when stacking 3 or 4 layers, and
increasing more layers will cause dramatic performance degrada-
tion, indicating it suffers from the over-smoothing problem in a
deep structure. In contrast, IMP-GCN continues to achieve better
performance with deeper structure (notice that when stacking more
than 7 layers, a node already aggregates information from almost
all the nodes, see Fig. 1. The results demonstrate the capability of
our model on alleviating the over-smoothing problem. Moreover,
it also 1) justifies our claim that exploiting information from all
nodes indiscriminately causes the over-smoothing in GCN-based
recommendation model, and 2) validates the effectiveness of our

(a) Recall on Kindle Store (b) Coverage Ratio on Kindle Store

Figure 4: Statistics of Recall and Coverage Ratio on Kindle
Store in three subgraphs.

subgraph generation algorithm on classifying users with common
interests.

3.2.2 Effect of Subgraph. The performance of IPM-GCN with dif-
ferent numbers (i.e., {2, 3, 4}) of subgraphs can also be observed in
Fig. 3. From the results, we can see that the (1) IMP-GCN2 with 2
subgraphs can obtain the best results when stacking no more than
3 layers. This is because a node in the subgraphs of IMP-GCN2
can reach more nodes in short distance than the on in IMP-GCN3
or IMP-GCN4in the embedding propagation operation. (2) When
stacking more than 3 layers, IMP-GCN3 performs the best. After 3
layers graph convolution, the number of involved nodes increasing
sharply in embedding propagation (see the examples in Fig. 1). On
average, each node in IMP-GCN2 should reach more nodes that
the one in IMP-GCN3 and IMP-GCN4, however, the performance
improvement of IMP-GCN2 is smaller or even negative (on th Kin-
dle Stores) than that of IMP-GCN3 and IMP-GCN4. This indicates
that there is still noisy information in embedding propagation by
discriminating user interests in a coarse-level (i.e., 2 subgraphs),
negatively impacting the performance. Note that IMP-GCN3 can
still benefit from high-order neighbors. (3) With more subgraphs,
on the one hand, IMP-GCN4 can distinguish users with similar
interests in a finer level and thus can better distill information
from high-order neighbors; on the other hand, it also cuts more
connections to other nodes, especially the ones in short distance
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which provide more valuable information in embedding learning.
As a result, when stacking more layers, its performance is only
comparable to that of IMP-GCN2. Therefore, there is a trade-off on
selecting the number of subgraphs. We further studied the effects
of subgraphs by analyzing the average coverage ratio of each node
and the corresponding performance based on the LightGCN and
our IPM-GCN model. Due to the space limitation, we only provide
the results on Kindle Store and omit the performance 𝑤.𝑟 .𝑡 ndcg
which has the similar trend as recall. In this experiment, we used
the LightGCN with 4 layers and IPM-GCN with 3 subgraphs6 and 6
layers, which are their optimal setting on Kindle Store. The average
recall and average cover ratio of each user in a subgraph based
on LightGCN and IPM-GCN are shown in Fig. 4(a) and Fig. 4(b),
respectively. Notably, by grouping users with similar interest in
subgraphs to make information only propagate inside subgraphs,
IPM-GCN can benefit from more layers of graph convolution and
distill positive information from high-order neighors. In contrast,
LightGCN is limited by the negative information from high-order
neighbors and can only gain improvements over 4 layers. Compar-
ing the performance of different subgraphs, we can see that with
a higher coverage ratio, the performance of IPM-GCN increases
clearly.

Another interesting finding is that, by stacking 6 layers, a user
node in a subgraph almost connects to all the other nodes in the
whole graph. This indicates that the users in a subgraph almost
interact all the items in the graph (otherwise, the coverage ratio
cannot be that high). More importantly, IPM-GCN can still achieve
improvement with such high coverage without over-smoothing.
This indicates that the embeddings of items learned in a graph
contributes to the embedding learning of users in this graph, and
the distilled information in a subgraph during graph convolution is
useful for the embedding learning for all the nodes in this subgraph.
It demonstrates the effectiveness of our interest-aware message-
passing strategy and the subgraph generation algorithm.

3.3 Comparison with SOTA Methods
3.3.1 Baselines. To demonstrate the effectiveness, we compared
our proposed method with several recently proposed competitive
methods, including

• NeuMF [15]: It is a state-of-the-art neural collaborative filter-
ing method. This method uses multiple hidden layers above the
element-wise and concatenation of user and item embeddings to
capture their non-linear feature interactions.

• HOP-Rec [44]: This method exploits the high-order user-item
interactions by random walks to enrich the original training data.
In experiments, we used the codes released by the authors 7.

• CSE [2]: This recently proposed graph-based model also exploits
the high-order proximity in the user-item bipartite graph. Dif-
ferent from HOP-Rec, this method explores the user-user and
item-item relations by randomwalks to improve the performance.
We used the codes released by the authors ( the same link as HOP-
Rec).

6Number of users in the three groups𝐺1 ,𝐺2 ,𝐺3 are 3, 971, 3, 584, 6, 801, respectively.
7https://github.com/cnclabs/smore.

Table 2: Performance of ourmodel and the competitors over
three datasets. Noticed that the values are reported by per-
centage with ’%’ omitted.

Datasets Kindle Store Home&Kitchen Gowalla
Metrics Recall NDCG Recall NDCG Recall NDCG
NeuMF 4.96 2.06 1.34 0.62 12.96 11.21
CSE 7.65 4.54 1.93 0.91 13.85 11.51
HOP-Rec 7.96 4.58 1.98 0.94 14.11 12.70
GCMC 7.93 4.55 1.42 0.64 14.03 11.68
NGCF 8.25 5.09 2.14 0.96 15.62 13.35
LightGCN 10.22 6.24 3.03 1.39 17.96 15.29
IMP-GCN 10.88* 6.73* 3.22* 1.49* 18.69* 15.85*
Improv. 6.46% 7.85% 6.27% 7.19% 4.07% 3.66%
The symbol * denotes that the improvement is significant with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05
based on a two-tailed paired t-test.

• GCMC [31]: This method applies the GCN techniques on user-
item bipartite graph and employs one convolutional layer to
exploit the direct connections between users and items.

• NGCF [35]: This method explicitly encodes the collaborative
signal in the form of high-order connectivities by performing
embedding propagation in the user-item bipartite graph.

• LightGCN [14]: It is an simplified version of NGCF by removing
the feature transformation and nonlinear activation module. It
makes GCN-based methods more concise and appropriate for
recommendation and achieves the state-of-the-art performance.

For fair comparisons, all themethods are optimized by the same pair-
wise learning strategy. We put great efforts to tune these methods
based on the validation dataset and reported their best performance.

3.3.2 Overall Comparison. Table 2 shows the performance com-
parison results. The best and second best results were highlighted
in bold. From the results, we had following observations.

The performance of NeuMF is relatively poor as it not explicitly
leverages the high-order connectivities between users and items,
resulting in suboptimal performance. For the graph-based methods,
CSE makes use of the implicit associates of user-user and item-item
similarities via high-order neighborhood proximity by performing
random walks on the user-item interaction graph. GCMC obtains
better performance over CSE, demonstrating the advantages of
GCN-based approaches, which can exploit graph structure informa-
tion. However, it does not perform well on𝐻𝑜𝑚𝑒&𝐾𝑖𝑡𝑐ℎ𝑒𝑛 because
the useful information in neighbors cannot be efficiently aggregated.
Hop-Rec outperforms the above methods on the three datasets, be-
cause it samples user-item interactions from high-order neighbors
to enrich the training data. NGCF achieves consistent much better
performance over the above baselines. This is because it adopts the
GCN techniques to explicitly and directly exploit the high-order
connectivities in the embedding. In contrast, the GCMC method
only utilizes the first-order neighbors for representation learning;
HOP-Rec and CSE leverage the high-order neighbors to enrich
the training data rather than using them in embedding function
for direct representation learning. This demonstrates the powerful
representation learning capability of GCN and the importance of
utilizing high-order information directly in representation learning.
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Table 3: Performance of our model and its variants over
three datasets. Noticed that the values are reported by per-
centage with ’%’ omitted.

Datasets Kindle Store Home&Kitchen Gowalla
Metrics Recall NDCG Recall NDCG Recall NDCG
IMP-GCN𝑠 10.57 6.63 3.14 1.43 18.61 15.61
IMP-GCN𝑓 10.19 6.40 2.97 1.31 17.84 15.11
IMP-GCN 10.88 6.73 3.22 1.49 18.69 15.85

Similar to the results reported in [14], LightGCN achieves substan-
tially improvement over NGCF by simplifying it with the removal
of two common designs in GCN.

IMP-GCN outperforms all the baselines consistently over all the
datasets. In particular, compared to the strongest baseline in terms
of NDCG@20, IMP-GCN can reach a relative improvement over
LightGCN by 7.85%, 7.19%, 3.66% on 𝐾𝑖𝑛𝑑𝑙𝑒𝑆𝑡𝑜𝑟𝑒 , 𝐻𝑜𝑚𝑒&𝐾𝑖𝑡𝑐ℎ𝑒𝑛
and 𝐺𝑜𝑤𝑎𝑙𝑙𝑎, respectively. The great improvement over LightGCN
demonstrates the importance of distinguishing nodes in high-order
neighbors in the graph convolution operation, as well as the effec-
tiveness of our proposed interest-aware message-passing strategy.

3.4 Ablation Study
In this section, we examined the contribution of different compo-
nents in ourmodel to the final performance by comparing IMP-GCN
with the following two variants:
• IMP-GCN𝑠 : This variant removes the graph structure informa-
tion from the subgraph generation module (i.e., removing 𝒆 (1)𝒖
in Eq. 13).

• IMP-GCN𝑓 : In this variant, the first-order propagation is also
performed inside each subgraph (i.e., The equation for 𝒆 (1)𝒊 in
Eq. 3 is replaced with

∑
𝑠∈S 𝒆 (1)𝒊𝒔 ).

The results of two variants and IPM-GCN were reported in Ta-
ble 3, in which the best results are highlighted in bold. IMP-GCN
outperforms IMP-GCN𝑠 over all the datasets, which indicates the
effectiveness of employing graph structure information in subgraph
generation module. It is expected that IMP-GCN𝑠 obtains much bet-
ter performance over IMP-GCN𝑓 , because the first-order neighbors
(i.e., the interaction between users and items) contributes the direct
information for user and embedding in the collaborative filtering
process. The results also demonstrate the reasonable design of our
IPM-GCN model.

4 RELATEDWORK
As one of the most important information retrieval techniques,
recommendation has made tremendous progress in past decades.
Among various recommendation approaches, the model-based col-
laborative filtering (CF) [5, 6, 14–16, 21, 22, 29, 34, 35] achieves a
great success and becomes the mainstream recommendation tech-
nique. CF learns user and item embeddings by reconstructing the
user-item interaction matrix. Earlier research efforts mainly focus
on the shallowmodels, such as BPR [29], CML [16], matrix factoriza-
tion (MF) [21]. Their success motivates the development of various
variants via leveraging additional information (e.g., review [27],

image [12], knowledge graph [32–34]) to deal with different tasks
(e.g., context-aware [24], session-based [25]). With the rise of deep
learning, it has also been widely applied in recommendation and ex-
hibits great potential by either enhancing the user/item embedding
learning or introducing non-linearity into the interaction func-
tion, promoting another peak development of recommendation
technique. Many DL-based recommendation models have been pro-
posed, such as NeuMF [15], Wide&Deep [4], and achieved better
performance over traditional models.

Another research line is graph-based recommendation, which
can explicitly exploit high-order proximity between users and items.
Early approaches infer indirect preference by random walks in the
graph to provide recommendation [7, 10, 11]. The recently proposed
approaches exploit the user-item bipartite graph to enrich the user-
item interactions [44, 46] and explore other types of collaborative
relations, such as user-user and item-item similar ties [2, 46]. For
example, HOP-Rec [44] uses random sample positive user-item
interactions to enrich the training data by using random walks.
WalkRanker [46] and CSE [2] performs random walks to explore
the high-order proximity in user-user and item-item relations. As
those methods rely on randomwalks to sample new interactions for
model training, their performance heavily depends on the quality of
generated interactions by random walks. As a result, these methods
need carefully selection and tuning effects.

In recent years, Graph Convolution Networks (GCNs) have at-
tracted increasing attention in recommendation due to the powerful
capability on representation learning from non-Euclidean struc-
ture [8, 9, 14, 23, 31, 34–38, 45, 47]. And then, many GCN-based
recommendation models have been developed. For example, GC-
MC [31] employs one convolution layer to exploit the direct con-
nections between users and items; PinSage [45] combines random
walks with multiple graph convolution layers on the item-item
graph for Pinterest image recommendation; MEIRec [8] utilizes
metapath-guided neighbors to exploit rich structure information
for intent recommendation; NGCF [35] exploits high-order proxim-
ity by propagating embeddings on the user-item interaction graph;
instead of implicitly capturing the high-order connectivity through
the propagation embedding, SMOG-CF [47] is proposed to directly
capture the high-order connectivity between neighboring nodes at
any order. Multi-GCCF [30] explicitly incorporates the user-user
and item-item graphs, which is built upon the user-item bipartite
graph, in the embedding learning process. Inspired by the study of
simplifying GCN [39], researchers also introspect the complex de-
sign in GCN-based recommendation models. He at al. [14] pointed
out that the two common designs feature transformation and nonlin-
ear activation have no positive effects on the final performance, and
proposed LightGCN which substantially improves the performance
over NDCG. Meanwhile, Chen et al. [3] also proposed to remove
the nonlinearity in the network and introduced a residual network
to alleviate the over-smoothing problem in existing GCN-based rec-
ommendation models. In this paper, we move a step further on this
research line. We claim that the indiscriminatively exploiting the
high-order neighboring nodes is also an important reason for the
over-smoothing problem for GCN-based recommendation model.
A typical example is that two users with contradictory interests
can be also connected via a 𝑘-order path in the user-item interac-
tion graph. To tackle the problem, we propose an interest-aware
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message-passing strategy to make the embedding propagation only
happened inside a subgraph with similar interests.

5 CONCLUSION
In this work, we argued that exploiting high-order node indiscrimi-
nately would introduce negative information into the embedding
propagation in the GCN-based recommendation models, causing
the performance degradation when stacking more layers. We pre-
sented a IMP-GCN model which learns user and item embeddings
by performing high-order graph convolution inside subgraphs. The
subgraphs are formed by a designed subgraph generation algo-
rithm that groups users with similar interests and their interacted
items into the same graph. In IMP-GCN, the embedding of a node
learned in a subgraph only contributes to the embedding learning of
other nodes in this subgraph. In this way, IMP-GCN can effectively
avoid taking the noisy information into the embedding learning.
Experiments on large-scale real-world datasets demonstrate that
IMP-GCN can gain improvements by stacking more layers to ex-
ploit information from higher-order neighbors, and achieve the
state-of-the-art performance. The advantages of IMP-GCN indicate
the importance of distinguishing high-order neighbors on tackling
the over-smoothing problem in GCN models. We believe the in-
sights in this study can shed light on the further development of
graph-based recommendation models.
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